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In photography a lens is used to focus on an important part of an image.
Similarly the concept of lenses in functional programming offers a way of
focusing on a particular part of a record. Furthermore lenses allow the simple
and correct manipulation of records by fulfilling a number of lens laws. This
work introduces the concept of lenses together with the related lens laws.
It will then delve further into the class of well-behaved lenses. Lastly the
actual implementation of the more specific class of very well-behaved lenses
is discussed in the context of the popular Haskell lens library by Edward
Kmett.

1 Introduction
The concept of lenses in functional programming offers a way of focusing on a particular
part of a, possibly nested, data structure or container. This focused part is called the
view. The container is called the source. Lenses were originally known as functional
references. Twan van Laarhoven, for example, did a lot of work [13, 11, 14, 12] on
functional references. Later Pierce et al. [3] came up with the name lens during their
work on bidirectional programming languages. In the following chapters Haskell code
will be used for all examples.
Using a lens we can access the view part and read, write or modify it. For that purpose,
there are two functions which define the lens. The first function is a getter, often called
get, which extracts the view from a source. The second function is a setter, often
called put, which sets a view value in a source. Since the getter often projects away the
part of the source not contained in the view, it usually takes the unmodified source as
an additional argument as mentioned in [2, p. 12]. A lens is a first-class value, i.e. a
value that can be passed around in a program, of the type Lens s v. Here s represents
the source type and v the view type. An example would be a lens which focuses on
the name field of type String of a Person data type. The lens type for this example
would be Lens Person String. Since data structures can be nested, lenses can also be
composed. An example for this would be a lens which extracts a zipcode of type Int
from an Address data type which is nested in the previously mentioned Person data
type. The result would be a lens of type Lens Person Int.
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data Address = Address { zipcode :: Int , street :: String ,
city :: String }

data Person = Person { name :: String , age :: Int ,
address :: Address }

setZipcode p zip = p
{ address = ( address p) { zipcode = zip } }

Figure 1: Record updates in Haskell.

In the context of Haskell, the usage of lenses is motivated by the record update syntax
shown in Figure 1. A setter for the nested zipcode field in a Person record is quite
lengthy considering that there is only one level of nesting. One can imagine what a
setter for a deeper nested structure would look like. Lenses will provide a more compact
solution to this problem.
The structure of this paper is as follows. We start off with a basic data definition
of lenses together with some basic operations. Then a more detailed look at the lens
classes well-behaved and very well-behaved [1, p. 2, 2, p. 11-15] follows. These classes
fulfill several so called lens laws which will be presented and discussed. Then a look
at the lens library by Edward Kmett [4] follows. The simple usage of the library as
well as the implementation of so called van Laarhoven lenses [11, 17] will be presented.
We summarize the results and give an outlook on more advanced features in the last
chapter.

2 Lenses
To start things off a simple definition of lenses in Haskell will be provided. Then a more
detailed look at lens classes which define lens laws that all the lenses of that class have
to adhere to follows.

2.1 Lens Basics
Before delving deeper into the laws and properties of lenses a simple definition of the
basic construct of a lens will be presented as a data type definition in Haskell. The
definition is inspired by the notion of a Basic Lens as defined by John Nathan Foster
in his work on bidirectional programming languages [2, ch. 2], but omits a creation
function for initial sources as in [1, p. 1].
Figure 2 shows the definition in Haskell. We can see that the lens consists of two
functions. The first is a getter function get which returns the view of type v when
applied to a source of type s. Function number two is a setter function put which sets
the view part of the source in the second argument to the new view in its first argument.
Furthermore there are two functions view and set which extract the respective getter
and setter.
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data Lens s v = Lens (s -> v) (v -> s -> s)

view :: Lens s v -> (s -> v)
view (Lens get put) = get

set :: Lens s v -> (v -> s -> s)
set (Lens get put) = put

Figure 2: Simple definition of a lens in Haskell.

Simply defining a data type and some functions is not enough. Because lenses are a
powerful tool, they must satisfy some intuitive laws to eliminate unwanted side effects
of retrieving and setting views. There are many different laws that a lens can fulfill.
Using the laws different lens classes can be defined. The following sections will discuss
the well-behaved and very well-behaved lens classes as presented in [1, p. 2, 2, p. 11-15].
There are many more classes like isomorphic lenses [12] or oblivious lenses [2, p. 15].
They are however not relevant for this work.

2.2 Well-Behaved Lenses
Before getting into the laws of well-behaved lenses, we first require put and get to be
total functions. In Haskell this means that there can not be undefined cases for the
definition of put and get. Well-behaved lenses have to fulfill the following two laws.
The first law simply states that if a view value b is set in an source a using the put
function of a lens, the same value can be retrieved again using get.

get (put b a) = b (PutGet)

Law number two states that setting the view retrieved from a source a, namely get a,
does not change the container.

put (get a) a = a (GetPut)

These laws already have an important implication. According to [1, p. 6] the definition of
the put function in a well-behaved lens uniquely defines the corresponding get function.
[1, p. 6 ff] provides a proof for this fact that is however non constructive, meaning that
there is currently no deterministic way of deriving the corresponding get function from
an already defined put function.

2.3 Very Well-Behaved Lenses
Very well-behaved lenses add a third law to the laws of well-behaved lenses. It states
that setting the view value twice always results in the same source which is obtained
when setting the value c set last. Meaning that the first application of put does not
affect the latter one.
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get x = (x ,0)
put (x,_) _ = x

lens = Lens get put

-- Example:
-- get (put (1 ,1) 2) = (1 ,0) != (1 ,1)

Figure 3: Example of a lens that does not satisfy the PutGet law, but satisfies GetPut.

put c (put b a) = put c a (PutPut)

2.4 Lens Laws
Defining the lens classes is nice, understanding why the laws behind them are necessary
is better. [2, p. 12 ff] provides an extensive overview with a list of three main properties
which lens laws presented above guarantee. All examples are inspired by [2], but adapted
in Haskell code. The following sections will summarize two of the three main goals
relevant for the Haskell library presented later: Exact translation and source integrity.
Note that the totality of put and get already provides some stability of programs which
use lenses because the two functions always return some value for every possible input.

2.4.1 Exact Translation

When working with lenses, it is important to consider how updates are handled. In most
cases an update of a view is expected to be translated exactly to the source container.
No information should be lost or modified when putting the new view data in a source.
The law PutGet assures that the lens satisfies this condition.
An example for a lens that does not satisfy PutGet can be defined as depicted in Figure
3. A comment with an example that does not fulfill the law is also provided and it is
intuitive that the view is not translated exactly, since the setter put drops one argument.

2.4.2 Source Integrity

After looking at the exact translation of the view part, we can also look at what happens
to the part of the source that is not covered by the view. The goal here is to minimize
the changes to the source. One restriction to achieve this goal is provided by GetPut
which states that the source must remain unchanged if the same view is set which was
extracted. In other words: Setting the view that was previously set in the source does
not change it at all.
An example for a lens which does not satisfy GetPut is given in Figure 4. It also
includes a counterexample. It is easily visible why the condition above is not met,
because the setter omits the second tuple argument and replaces it with 0, i.e. the setter
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get (x,_) = x
put x (_,_) = (x ,0)

lens = Lens get put

-- Example:
-- put (get (2 ,2)) (2 ,2) = (2 ,0) != (2 ,2)

Figure 4: Example of a lens that does not satisfy the GetPut law, but satisfies PutGet.

modifies the source in almost any case. One thing to keep in mind is that the GetPut
law only considers unchanged views as input for put. It does not say anything about
updates with views which are actually different from the one currently in the source.
Such updates might change the part of the source which is not represented in the view
when calling put.
PutPut is used to restrict the modification of the source further. It ensures that a put
does not change anything outside the scope of the view. In practice this law is very
restrictive and rules out many lenses. [2, p. 14-15] shows an example where PutPut is
violated. Since the example is very arbitrary and not really relevant for the lenses used
for record updates, this paper will skip the example. Instead we will define a very well-
behaved lens for our Person data type from Figure 1. The lens will focus the name field
of the record. The definitions of get and put for this lens are provided in Figure 5. It
also includes proofs for each of the laws of very well-behaved lenses which means that the
nameLens is very well-behaved. In each step of the proof simply the function definitions
are applied and we can verify the laws directly. Note that there are no assumptions
made about the respective function arguments and fields of the Person data type.
Besides a formal correctness of lenses, the laws above can also be used as a heuristic to
reject , possibly auto-generated, candidate lenses as mentioned in [2, p. 14]. Most of
the lenses in the Haskell library are predefined or auto generated and fulfill these laws
without further proofs. However the programmer is still responsible for ensuring the
laws above for custom lenses, as Edward Kmett mentions in an overview on lenses. A
type system alone is not enough to provide correctness of lenses w.r.t. the laws according
to the overview [10] provided by Kmett.

3 The lens Library
Edward Kmett, the creator of the lens Haskell library [4], originally started working on
his first lens library data-lens [5] in 2011. Since then lenses have gained considerable
traction in the Haskell community. At the time of this paper, the data-lens library is
no longer maintained by Kmett and the new lens library has largely taken its place.
There, the definition of lenses is based on van Laarhoven lenses [11, 17, ch. 4]. A term
introduced by Russell O’Connor [17] in 2011. Van Laarhoven lenses as implemented in
lens belong to the previously introduced class of very well-behaved lenses as mentioned

5



get :: Person -> String
get ( Person name age address ) = name

put :: String -> Person -> Person
put newname ( Person name age address ) = Person newname age address

nameLens = Lens get put

-- PUTGET:
-- get (put nn ( Person n age addr)) =
-- get ( Person nn age addr) = nn
-- GETPUT:
-- put (get ( Person n age addr)) ( Person n age addr) =
-- put n ( Person n age addr) = Person n age addr
-- PUTPUT:
-- put n1 (put n2 ( Person n age addr)) =
-- put n1 ( Person n2 age addr) = ( Person n1 age addr) =
-- put n1 ( Person n age addr)

Figure 5: Definition of a very well-behaved lens for the name field of the Person data
type from Figure 1.

by Kmett in [8]. Compared to the simple definition of lenses presented at the beginning
of this paper, the lens data type and functions are slightly more complicated. However
this makes them more powerful than traditional lenses as we will see in the following.
First, however, using the library is explained which will make clear that, although the
definition is complicated, the usage is simple.

3.1 Using the lens Library
To work with the lens library, it first has to be installed on the target system. This
can be done using the cabal install lens command. Also the Control.Lens module
must be imported. Once the setup is done the first commands using lenses can be
executed. Next the most important basic functions of lenses are listed and explained.
The examples are largely taken from the examples page of the lens wiki [7] on GitHub.
The general type of the lenses used in the examples is depicted in Figure 9 but not really
important for the examples at this point. Its explanation follows in the implementation
section.

• get (infix: ^.) takes a lens and a source as an argument and returns the corre-
sponding view. An example in GHCi is:
ghci> view _2 ("hello","world") -- or (" hello "," world ")^._2
"world"

Here _2 is the lens, the tuple ("hello","world") is the source and "world" is
the extracted view.
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• set (infix: .~) takes a lens, the updated view and the source as an argument and
returns the updated source. An example in GHCi is:
ghci> set _1 "hello" ("","world")

-- or _1 .~ "hello" $ ("" ," world ")
("hello","world")

Here _1 is the lens, "hello" is the updated view, ("","world") is the original
source and ("hello","world") is the updated source.

• Lenses can be composed using the function composition . as follows.
ghci> set (_2._1) 42 ("hello" ,("world","!!!"))
("hello" ,(42,"!!!"))

• The to function allows the user to transform the output of a getter with another
method. This can be done by appending to to the lens. An example in GHCi is:
ghci> (3 ,(5 ,7))^._2._2.to (*2)
14

• It is also possible to derive lenses, as data accessors, for any data type. The
Template Haskell macro makeLenses ’’YourDataType is simply added after the
data type definition.
data Test a = Test

{ _foo :: Int , _bar :: Int , _sth :: a }

makeLenses ’’Test

-- The following lenses are generated:
-- foo , bar :: Lens’ (Foo a) Int
-- sth :: Lens (Foo a) (Foo b) a b

The underscore before the field name indicates that a lens should be generated.
To avoid confusion with the Lens’ data type it should be mentioned that it is just
a simpler form of a Lens that can be used and composed regularly with a Lens.
The difference will be explained together with the implementation details.

• For our last example we will take the Person and Address data types from Figure
1 at the beginning of this paper. If we derive lenses similarly to the simple Test
data type from above for both types we can define the setter function in one line.
setZipcode p zip = set ( address . zipcode ) zip p

address and zipcode are the generated lenses and are composed with function
composition (.) to write the setter. Obviously this is a big improvement over the
cumbersome Haskell record update syntax.
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class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

Figure 6: Definition of the Functor type class and an example instance for Maybe.

There are many more features in the lens library but going into all of them would take
many more pages. Several sources [7, 9] on the web provide additional material for
interested readers. Most importantly one should keep in mind that using the generated
lenses from the last example, we can use the simple syntax of set to update record
values instead of the impractical record update syntax in Figure 1.

3.2 The Functor Type Class
Next a quick introduction to some data types required for the explanation of the im-
plementation will be presented. First the Functor type class will be explained shortly
according to [15]. The definition as well as an instance of a functor are provided in
Figure 6.
A Functor is simply a data type that can be mapped over, hence the name fmap for the
defined function. fmap lifts a function from the type a -> b to the type f a -> f b.
Where f is a type constructor that takes one other type as an argument. Besides the
provided example for Maybe, List would be another instance of Functor. For List the
fmap function simply corresponds to the regular List.map function.

3.3 The Identity Data Type
The Identity data type, shown in Figure 7 is pretty straight forward and defined in
Data.Functor.Identity [19]. Its constructor has only one field and acts as a wrapper
for other data types. runIdentity simply peels off the Identity and will be useful later.
Furthermore it is important that Identity is also a functor. The definition basically
writes itself, because there are no possibilities to write it. The result type of f is unknown
which means we can not supply a value to the Identity value constructor. This only
leaves f x as the only possible argument.

3.4 The Const Data Type
The last relevant data type is called Const which is defined in Control.Applicative
[16]. Figure 8 shows the definition together with a getConst function that works anal-
ogously to the runIdentity function of Identity. Interesting about the Const type is
that the constructor ignores one type argument similar to the well known const func-
tion, only on the type level. We can also define an instance for Functor which does not
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newtype Identity a = Identity { runIdentity :: a }

-- runIdentity :: Identity a -> a

instance Functor Identity where
fmap f ( Identity x) = Identity (f x)

Figure 7: Definition of the Identity data type and an example instance for Maybe.

newtype Const a b = Const { getConst :: a }

-- getConst :: Const a b -> a

instance Functor (Const a) where
fmap f (Const x) = Const x

Figure 8: Definition of the Const data type.

require the usage of f. There is simply no argument, to which f could be applied to
since Const has no field of the type b.

3.5 Implementation of the lens Library
With these things in mind we can now look at the definition of a van Laarhoven lens
in the lens library together with the view and set function. The focus lies on how
the implementation achieves the functionality of simple lenses (Figure 2), instead of
explaining the theory [17] behind van Laarhoven lenses. Figure 9 shows the definition
of a lens in the lens library. Compared to the simple definition in Figure 2 a lens is no
longer defined by two functions but a function in itself. There are many data types like
Getter and Setter defined in lens but we will only provide a simplified explanation of
the implemented lenses. The library is simply too extensive to present everything.
Instead we will look at the much simpler explanation and implementation provided by
Twan van Laarhoven [11]. However, the lens definition is still the same. Informally a
lens now lifts a function of type a -> f b on the view of type a to a function s -> f t
on the source of type s. Because lenses in this library also allow polymorphic updates
of records [18], i.e. updates that change the type of a field with a polymorphic type in
an instance, the view type changes from a to b. Since the view type changes, the source
type consequently changes too, because the view is contained by the source. Hence the
source type changes from s to t. Lens’ is the definition of a lens for non polymorphic
updates and was already mentioned in Section 3.1.
Furthermore there is now a type constructor f in the definition. It is useful when we try to
create an update method for a lens by providing different behaviors [11]. The motivation
behind the update method is that if a view is altered using a function, the simple lens
definition only provides updates by first getting, then modifying and lastly setting the
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type Lens s t a b = Functor f => (a -> f b) -> (s -> f t)
type Lens’ s a = Lens s s a a

-- Functor f => (a -> f a) -> (s -> f s)

Figure 9: Definition of Lens and Lens’ in the lens library.

set :: Lens’ s a -> a -> s -> s
set ln v s = runIdentity (ln (const ( Identity v)) s)

over :: Lens’ s a -> (a -> a) -> s -> s
over ln g s = runIdentity (ln ( Identity . g) s)

view :: Lens’ s a -> s -> a
view ln v s = getConst (ln Const s)

Figure 10: Definition of set and view for Lens’ lenses.

value again. This is very inefficient because the data structure has to be traversed twice.
Once for getting and once for setting. More suitable would be an update method which
can apply a function to a view. However in practice such a function might want to fail,
i.e. return a Maybe value as a result. The given definition provides this capability and
also lifts the resulting source to the same Maybe data type which correctly reflects failed
updates to the view in failed updates to the source. A lens, as defined in Figure 9, should
be viewed as more of an access provider for applying functions to a view.

3.5.1 Defining set and view

With this in mind we can define the set and view function from the simple definition to
provide the exact same functionality by utilizing Identity and Const. For the remaining
explanation the simpler lens type Lens’ will be used. Besides the two functions from
above a simple update function will also be presented. For now, we assume that a lens
correctly lifts the function from it is first argument to the source type.
set, view as well as the update function over are defined in Figure 10. In the set
function, the update with a new value v, namely const (Identity v), is lifted to the
type of the source s using the lens ln. This results in a new source which is wrapped
into an Identity. Then runIdentitiy is used to peel off the constructor and the set
function returns the new source. The update function over is practically the same as
the set function, but applies g to the view before wrapping it into an Identity.
While set is quite easy to explain, view is more difficult. First the lens ln lifts the
Const constructor from the type a -> Const a a to the type s -> Const a s. Const
will take the view as an argument in the lens and contain it. Even though the source
type s is still part of the type of the Const container, only the view is stored (see Section
3.4). Using getConst, the view is extracted and returned as the result.
We have now seen that the definition of lenses as a function is just as powerful as the
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data Point = Point { _x :: Int , _y :: Int }

x :: Lens’ Point Int
x mod (Point a b) = fmap (\x’ -> Point x’ b) (mod a)

Figure 11: Definition of lens x for the data type Point.

simple lenses with two functions. set and view can be defined to work analogously to the
simple definition. The beauty of defining the lens as a function is, that lens composition
is then simply function composition. To see how function composition interplays with
lenses we refer to the derivation of lenses by Edward Kmett [6] as a detailed explanation
is beyond the scope of this paper.

3.6 Defining a Lens
As we have seen in section 3.1, lenses are mostly predefined or auto generated in the
library. It is still unclear, however, what the definition of a lens looks like. Up to
this point lenses were always just used as some abstract concept which lifts a function
on a view to a function on a source. We will remedy this now. Figure 11 shows the
definition of a lens x for the _x value of a Point data type. The argument mod is
the modifier function of type Int -> f Int, where f is a functor. This could be the
function const (Identity v) from the definition of set, for example. Identity would
be the functor f in this example. Next the right hand side will be discussed. The fmap
function is used to lift the function (\x’ -> Point x’ b) from the type Int -> Point
to f Int -> f Point. Lastly the new view value is passed which is the result of mod a
with the type f Int. Also note that the fmap function is defined for f. If f is Identity
then the fmap function from Figure 7 is called. To conclude we note that there are
no longer the functions put and get. However the set and view functions still have
the same result type as in the simple definition of a lens. Therefore we could define
put = set ln and get = view ln for some lens ln, to achieve something similar to the
put and get components of the simple definition.

4 Conclusion
During the course of this paper, a simple definition of lenses was presented. Next the
concept of lens classes was introduced and the corresponding lens laws were first pre-
sented and then motivated. Section 3 concerned itself with the Haskell library lens by
showing the simplicity and convenience of its usage, followed by a more detailed look at
the implementation. When discussing the implementation, the slightly different defini-
tion of lenses by Twan van Laarhoven was presented and motivated. We have also shown
the benefits of the van Laarhoven lenses, i.e. simple composition and polymorphic record
updates. There are many more advanced concepts in the lens library which allow for
very powerful features. One possibility is to require that the underlying data type is not
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only a Functor but an instance of the Traversable type class. This allows for more
than one focused field. In the provided simple explanation, only views focusing a single
field in a data structure were discussed. With traversals this can be extended to any
number fields as described in [6]. It should be mentioned that lens is by far not the only
lens library [22, 20] and has been criticized [21] for being over-engineered. Although the
functions like view and set are easy to use, their types are very hard to understand
when compared to the simple lens definition in Figure 2 which makes the library less
user friendly. Especially since most of the types of the functions provided by lens are
often generalized further. To conclude, lenses in functional programming can be very
useful as they solve problems like the impractical record update syntax of Haskell.
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